tropostack

Mar 03, 2020

Contents

1 Quickstart

L1 ADbOUL e e
1.2 0 DOCS . . o e e e e e e e e e e e e e e e e e e
1.3 Installation e e e e e e e e
1.4 Firststack e e e e e
1.5 Stockcommands e e e
2 Examples
2.1 S s
2.2 EC2 . e e

3 Indices and tables
Python Module Index

Index

BN = = =

W

11

CHAPTER 1

Quickstart

1.1 About

Tropostack is a CLI/workflow library that simplifies the creation and management of CloudFormation stacks, based
on the excellent Troposphere Project.

Tropostack features:
« Single stack template = single executable Python file = single CLI
* Support for different configuration and CLI plugins
* A collection of generic commands available to each stack (e.g. create)
* Support for user-defined CLI commands (e.g. upscale)

* Helper routines (e.g. locate the newest matching AMI)

1.2 Docs

Full docs are at https://tropostack.readthedocs.io/en/latest/

1.3 Installation

’$ pip install tropostack

Or, you can use setup.py to install from a cloned repository:

https://pypi.org/project/tropostack/
https://travis-ci.org/gtie/tropostack
https://aws.amazon.com/cloudformation/
https://github.com/cloudtools/troposphere
https://tropostack.readthedocs.io/en/latest/

tropostack

$ python setup.py install

1.4 First stack

You use tropostack as a library to:
* Consisteny define CloudFormation templates in Python code
* Have a CLI around each stack definition, enabling it to live as a standalone executable

Here is a minimalistic example of a stack that creates an S3 bucket, and exports the ARN as an Output:

#!/usr/bin/env python3

from troposphere import s3
from troposphere import Output, Export, Sub, GetAtt

from tropostack.base import InlineConfStack

from tropostack.cli import InlineConfCLI

class MyS3BucketStack (InlineConfStack) :
Name of the stack
BASE_NAME = 'my-s3-bucket-stack’

Define configuration values for the stack

CONF = {
Region is always explicitly required
'region': 'eu-west-1",

Prefix the bucket name with the account ID
'bucket_name': Sub ('${AWS::AccountId}-my-first-tropostack-bucket')

Stack Resources are defined as class properties prefixed with 'r_'
@property
def r_bucket (self):
return s3.Bucket (
'MyBucketResource’,
BucketName=self.conf['bucket name']

Stack Outputs are defined as class properties prefixed with 'o_'
@property
def o_bucket_arn(self):
_id = 'BucketArn'
return Output (
_id,
Description='The ARN of the S3 bucket',
Value=GetAtt (self.r_bucket, 'Arn'),
We're exporting the output as <StackName>-<OutputId>
Other stacks can read the output relying on the same convention
Export=Export (Sub ("S{AWS::StackName}-%s" % _id))

if name = '__main__ ':

(continues on next page)

2 Chapter 1. Quickstart

tropostack

(continued from previous page)

Wrap the stack in a CLI and run it
cli = InlineConfCLI (MyS3BucketStack)
cli.run()

The above already gives you a usable CLI around your stack definition.

Assuming you put it inside an executable file called s3_minimal.py, you’d be able to call it already:

$./s3_minimal.py -h
usage: s3_minimal.py [-h]
{apply, create,delete, outputs, print, update, validate}

positional arguments:
{apply, create,delete, outputs, print,update, validate}

optional arguments:
-h, —--help show this help message and exit

You can now inspect the “raw” CloudFormation code generated by the stack:

$./s3_minimal.py print
Outputs:
BucketArn:
Description: The ARN of the S3 bucket
Export:
Name: !Sub 'S${AWS::StackName}-BucketArn'
Value: !GetAtt 'MyBucketResource.Arn'
Resources:
MyBucketResource:
Properties:
BucketName: !Sub 'S${AWS::AccountId}-my-first-tropostack-bucket'
Type: AWS::S3::Bucket

Assuming AWS credentials are present in the environment, we can now fire up stack that would create our S3 bucket:

$./s3_minimal.py create
Stack creation initiated for: arn:aws:cloudformation:eu-west-1:472799024263:stack/my—
—s3-bucket-stack/dd5e93c0-225c-11ea-93d8-0641cl59a77a

TIMESTAMP (UTC) RESOURCE TYPE RESOURCE ID .
— STATUS REASON

2019-12-19 12:41:23 AWS::CloudFormation: :Stack my-s3-bucket-—
—stack CREATE_IN_PROGRESS User Initiated

2019-12-19 12:41:26 AWS::S3::Bucket MyBucketResource
- CREATE_IN_PROGRESS

2019-12-19 12:41:27 AWS::S3::Bucket MyBucketResource
o CREATE_IN_PROGRESS Resource creation Initiated
2019-12-19 12:41:438 AWS::S3::Bucket MyBucketResource |
— CREATE_COMPLETE

2019-12-19 12:41:50 AWS: :CloudFormation: :Stack my—-s3-bucket—
—stack CREATE_COMPLETE

We can also inspect the stack Outputs - in this case, the ARN of the bucket:

$./s3_minimal.py outputs

Stack is in status: CREATE_COMPLETE

OutputKey OutputValue Description
— ExportName

(continues on next page)

1.4. First stack 3

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html#configuring-credentials

tropostack

(continued from previous page)

p————— e ———— e ———

BucketArn arn:aws:s3:::472799024263-my-first-tropostack-bucket The ARN of the S3_
—bucket my-s3-bucket-stack-BucketArn

Finally, we can clean up and have our stack deleted:

$./s3_minimal.py delete
Destroy initiated for stack: my-s3-bucket-stack

TIMESTAMP (UTC) RESOURCE TYPE RESOURCE 1ID -
— STATUS REASON

2019-12-19 12:44:59 AWS::CloudFormation: :Stack my-s3-bucket-
—stack DELETE_IN_PROGRESS User Initiated

Stack is gone: my-s3-bucket-stack (An error occurred (ValidationError) when calling
—the DescribeStackEvents operation: Stack [my-s3-bucket-stack] does not exist)

1.5 Stock commands

While the CLI can be expanded/customized for each individual tropostack, there are several subcommands that come
out of the box:

e print - prints the resulting CloudFormation YAML to the screen

* validate - Sends the CloudFormation template to the AWS API for validation, and reports back result
* create - Initiates the stack creation (should only be used if the stack does not exist yet)

* update - Updates an existing stack (should only be used if the stack exists)

* apply - Idempotently updates or creates a stack, based on whether it exists or not

* outputs - Shows the outputs of an existing stack

¢ delete - Deletes an existing stack

4 Chapter 1. Quickstart

CHAPTER 2

Examples

2.1 S3

2.1.1 s3_minimal
class examples.s3_bucket.s3_minimal .MyS3BucketStack (conf)
Minimal S3 bucket creation class. Single stack per region - no environment/release variation.
Parameters bucket_name (str)— The name of the S3 bucket to be created. Can contain AWS

variables such as $ {AWS: : AccountId}

Outputs: BucketArn (str): The ARN of the created S3 bucket

2.1.2 s3_policy
class examples.s3_bucket.s3_policy.AugmentedCLI (stack_cls)
Extend the default set of CLI commands to add a custom action.

cmd_purge ()
Delete all objects inside the S3 bucket, along with the bucket itself.

class examples.s3_bucket.s3_policy.S3BucketStack (conf)
Tropostack defining an S3 bucket with optional IP-based access restriction

Parameters

* allowed_cidr (str)—IP CIDR range to allow access from. Use 0.0.0.0/0 to allow
access from anywhere.

* bucket_name (str) — The name of the S3 bucket to be created. Can contain AWS
variables such as $ {AWS: : AccountId}

Outputs: BucketArn (str): The ARN of the created S3 bucket

tropostack

2.1.3 s3 _user
class examples.s3_bucket.s3_user.S3UserStack (conf)
Tropostack defining an S3 bucket, together with an IAM user account that is allowed to access the bucket
Parameters
* region (str)— Explicit region specification for the stack

* bucket_name (str) — The name of the S3 bucket to be created. Can contain AWS
variables such as $ {AWS: : AccountId}

* path (str) - Templated IAM user path. Must start and finish with a /
* username (str)— Templated username, e.g. $ {AWS: : StackName} -bot
* allowed actions (list of str)-S3 API actions to be enabled for the user

Outputs: BucketArn (str): The ARN of the created S3 bucket UserName (str): The ARN of the created S3
bucket

2.2 EC2

2.2.1 ec2_static_ip

class examples.ec2.ec2_static_ip.EC2Stack (conf)
Single-instance EC2 stack, which assigns a static IP address to the instance. Also features a security group,
dedicated to the instance/stack. Uses a human-friendly AMI path specification rather than AMI ID.

Parameters
* region (str)— Region where the stack/instance would be deployed
* instance_type (str)— EC2 instance type

* ami_location (str) — Qualified path to the AMI (i.e. Source in the UI). Example:
amazon/amzn2—-ami-hvm-2.0.20191116.0-x86_64—-ebs

* vpc_id (str)— VPC that the instance would be a part of
* subnet_id (str) - ID of the subnet where the instance would be deployed
* ssh_key_ name (str)— SSH Keypair name to be associated with the instance

* private_ip (str) — Static IP address of the instance. Must be available under the re-
spective Subnet

* access (list of 3-tuples) — List of 3 tuples to allow Ingress from, formatted as
(Protocol, Port, Network Range). Sample value: [('tcp', 22, '0.0.0.0/0'),]

6 Chapter 2. Examples

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

tropostack

8 Chapter 3. Indices and tables

Python Module Index

e

examples
examples
examples
examples

.ec2.ec2_static_ip, 6
.s3_bucket.s3_minimal, 5
.s3_bucket.s3_policy,5
.s3_bucket.s3_user,6

tropostack

10 Python Module Index

Index

A

AugmentedCLI (class in exam-
ples.s3_bucket.s3_policy), 5

C

cmd_purge () (exam-
ples.s3_bucket.s3_policy.AugmentedCLI
method), 5

E

EC2Stack (class in examples.ec2.ec2_static_ip), 6
examples.ec2.ec2_static_ip (module), 6
examples.s3_bucket.s3_minimal (module), 5
examples.s3_bucket.s3_policy (module), 5
examples.s3_bucket.s3_user (module), 6

M

MyS3BucketStack (class in exam-
ples.s3_bucket.s3_minimal), 5

S

S3BucketStack (class in exam-
ples.s3_bucket.s3_policy), 5
S3UserStack (class in examples.s3_bucket.s3_user), 6

11

	Quickstart
	About
	Docs
	Installation
	First stack
	Stock commands

	Examples
	S3
	EC2

	Indices and tables
	Python Module Index
	Index

